Quantum Determinants and Quasideterminants

نویسنده

  • Pavel Etingof
چکیده

Introduction The notion of a quasideterminant and a quasiminor of a matrix A = (a ij) with not necessarily commuting entries was introduced in GR1-3]. The ordinary determinant of a matrix with commuting entries can be written (in many ways) as a product of quasiminors. Furthermore, it was noticed in GR1-3, KL, GKLLRT, Mo] that such well-known noncommutative determinants as the Berezinian, the Capelli determinant, the quantum determinant of the generating matrix of the quantum group U h (gl n) and the Yangian Y (gl n) can be expressed as products of commuting quasiminors. The aim of this paper is to extend these results to a rather general class of Hopf algebras given by the Faddeev-Reshetikhin-Takhtajan type relations { the twisted quantum groups deened in Section 1.4. Such quantum groups arise when Belavin-Drinfeld classical r-matrices BD] are quantized. Our main result is that the quantum determinant of the generating matrix of a twisted quantum group equals the product of commuting quasiminors of this matrix. Acknowledgments We are indebted to Israel Gelfand for inspiring us to do

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quaternionic Quasideterminants and Determinants

Quasideterminants of noncommutative matrices introduced in [GR, GR1] have proved to be a powerfull tool in basic problems of noncommutative algebra and geometry (see [GR, GR1-GR4, GKLLRT, GV, EGR, EGR1, ER,KL, KLT, LST, Mo, Mo1, P, RS, RRV, Rsh, Sch]). In general, the quasideterminants of matrix A = (aij) are rational functions in (aij)’s. The minimal number of successive inversions required to...

متن کامل

Quasideterminants, I

Introduction A notion of quasideterminants for matrices over a noncommutative skew-field was introduced in [GR], [GR1], [GR2]. It proved its effectiveness for many areas including noncommutative symmetric functions [GKLLRT], noncommutative The main property of quasideterminants is a " heredity principle " : let A be a square matrix over a skew-field and (A ij) be its block decomposition into su...

متن کامل

A ug 2 00 2 QUASIDETERMINANTS

The determinant is a main organizing tool in commutative linear algebra. In this review we present a theory of the quasideterminants defined for matrices over a division algebra. We believe that the notion of quasideterminants should be a main organizing tool in noncommutative algebra giving them the same role determinants play in commutative algebra.

متن کامل

QUASIDETERMINANTS AND q-COMMUTING MINORS

We present two new proofs of the the important q-commuting property holding among certain pairs of quantum minors of an n × n q-generic matrix. The first uses elementary quasideterminantal arithmetic; the second involves paths in an edge-weighted directed graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998